No description
Find a file
2013-04-04 15:16:03 +09:00
common Add file action_code.h 2013-04-04 15:16:03 +09:00
converter Rename file layer_switch to action_layer 2013-04-02 17:44:24 +09:00
doc Fix doc/keymap.md 2013-04-03 01:33:33 +09:00
keyboard Rename file layer_switch to action_layer 2013-04-02 17:44:24 +09:00
protocol Add supsend and wakeup to pjrc stack 2013-03-27 15:18:08 +09:00
.gitignore
.gitmodules Add submodule USB_Host_Shield_2.0 from my repositry. 2012-09-02 23:06:02 +09:00
common.mk Rename file layer_switch to action_layer 2013-04-02 17:44:24 +09:00
protocol.mk Made directories for keyboard and converter projects. 2012-06-08 13:32:38 +09:00
README.md Refine README.md 2013-03-29 11:18:58 +09:00
rules.mk Fix Make dependency file names 2013-02-15 13:45:59 +09:00

t.m.k. Keyboard Firmware Collection

This is a keyboard firmware with some features for Atmel AVR controller.

Source code is available here: http://github.com/tmk/tmk_keyboard

Features

  • Multi-layer Keymap - Multiple keyboard layouts with layer switching
  • Mouse key - Mouse control with keyboard
  • System Control Key - Power Down, Sleep, Wake Up and USB Remote Wake up
  • Media Control Key - Volume Down/Up, Mute, Next/Prev track, Play, Stop and etc
  • USB NKRO - 120 keys(+ 8 modifiers) simultaneously
  • PS/2 mouse support - PS/2 mouse(TrackPoint) as composite device
  • Keyboard protocols - PS/2, ADB, M0110, Sun and other old keyboard protocols
  • User Function - Customizable function of key with writing code
  • Macro - Very primitive at this time
  • Keyboard Tricks - Oneshot modifier and modifier with tapping feature
  • Debug Console - Messages for debug and interaction with firmware
  • Virtual DIP Switch - Configurations stored EEPROM(Boot Magic)
  • Locking CapsLock - Mechanical switch support for CapsLock
  • Breathing Sleep LED - Sleep indicator with charm during USB suspend

Projects

You can find some keyboard specific projects under converter and keyboard directory.

converter

keyboard

Download and Install

1. Install Tools

First, you need tools to build firmware and program your controller. I assume you are on Windows here.

  1. Toolchain Install WinAVR. This is old but works well for this purpose. WinAVR is a tool set to build firmware including C compiler(gcc) and make commands. You can use CrossPack instead if you are on Mac.

  2. Programmer Install Atmel FLIP. FLIP is a tool to program(load) firmware into AVR controller via DFU bootloader. AVR USB chips including ATmega32U4 has DFU bootloader by factory default. You can also use dfu-programmer instead if you are on Mac or Linux.

  3. Driver At first time you start DFU bootloader on Chip 'Found New Hardware Wizard' will come up on Windows. If you install device driver properly you can find chip name like 'ATmega32U4' under 'LibUSB-Win32 Devices' tree on 'Device Manager'. If not you shall need to update its driver on 'Device Manager'. You will find the driver in FLIP install directory like: C:\Program Files (x86)\Atmel\Flip 3.4.5\usb. If you use dfu-programmer install its driver.

If you use PJRC Teensy you don't need step 2 and 3 above, just get Teensy loader.

2. Download source

You can find firmware source at github:

If you are familiar with Git tools you are recommended to use it but you can also download zip archive from:

Build firmware

1. Open terminal

Open terminal window to get access to commands. You can use cmd in Windows or Terminal.app on Mac OSX. In Windows press Windows key and R then enter cmd in 'Run command' dialog showing up.

2. Change directory

Move to project directory in the firmware source.

cd tmk_keyboard/{'keyboard' or 'converter'}/<project>

3. Make

Build firmware using GNU make command. You'll see <project>_<variant>.hex file in that directory unless something unexpected occurs in build process.

mkae -f Makefile.<variant> clean
make -f Makefile.<variant>

Program Controller

Now you have hex file to program on current directory. This hex is only needed to program your controller, other files are used for development and you may leave and forget them.

1. Start bootloader

How to program controller depends on controller chip and its board design. To program AVR USB chips you'll need to start it up in bootloader mode. Most of boards with the chip have a push button to let bootloader come up. Consult with your controller board manual.

2. Program with DFU bootloader

Stock AVR USB chip including ATmega32U4 has DFU bootloader by factory default. FLIP is a DFU programmer on Windows offered by Atmel. Open source command line tool dfu-programmer also supports AVR chips, it runs on Linux, Mac OSX and even Windows.

To program AVR chip with DFU bootloader use FLIP or dfu-programmer. If you have a proper program command in Makefile just type this.

FLIP has two version of tool, GUI app and command line program. If you want GUI see tutorial below. To use command line tool run this command. Note that you need to set PATH variable properly.

$ make -f Makefile.<variant> flip

Or to program with dfu-programmer run:

$ make -f Makefile.<variant> dfu

FLIP GUI tutorial

  1. On menu bar click Device -> Select, then. ATmega32u4.

  2. On menu bar click Settings -> Communication -> USB, then click 'Open' button on 'USB Port Connection' dialog. At this point you'll see greyouted widgets on the app get colored and ready.

  3. On menu bar click File -> Load HEX File, then select your firmware hex file on File Selector dialog.

  4. On 'Operations Flow' panel click 'Run' button to load the firmware binary to the chip. Note that you should keep 'Erase', 'Blank Check', 'Program' and 'Verify' check boxes selected.

  5. Re-plug USB cord or click 'Start Application' button to restart your controller. Done.

See also these instaructions if you need.

3. Program with Teensy Loader

If you have PJRC Teensy see instruction of Teensy Loader.

Or use this command if you have command line version of Teensy Loader installed.

$ make -f Makefile.<variant> teensy

4. Program with Other programmer

You may want to use other programmer like avrdude with AVRISPmkII, Aruduino or USBasp. In that case you can still use make target program for build with configuring PROGRAM_CMD in Makefile.

$ make -f Makefile.<variant> program

Makefile Options

1. MCU and Frequency.

MCU = atmega32u4       # Teensy 2.0
#MCU = at90usb1286      # Teensy++ 2.0
F_CPU = 16000000

# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
OPT_DEFS += -DBOOTLOADER_SIZE=4096

2. Features

Optional. Note that comment out to disable them.

BOOTMAGIC_ENABLE = yes      # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes       # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes       # Audio control and System control(+450)
CONSOLE_ENABLE = yes        # Console for debug(+400)
COMMAND_ENABLE = yes        # Commands for debug and configuration
SLEEP_LED_ENABLE = yes      # Breathing sleep LED during USB suspend
#NKRO_ENABLE = yes          # USB Nkey Rollover - not yet supported in LUFA

3. Programmer

Optional. Set proper command for your controller, bootloader and programmer. This command can be used with make program. Not needed if you use FLIP, dfu-programmer or Teesy Loader.

# avrdude with AVRISPmkII
PROGRAM_CMD = avrdude -p $(MCU) -c avrispmkII -P USB -U flash:w:$(TARGET).hex

# avrdude with USBaspLoader
PROGRAM_CMD = avrdude -p $(MCU) -c usbasp -U flash:w:$(TARGET).hex

# avrdude with arduino
PROGRAM_CMD = avrdude -p $(MCU) -c arduino -P COM1 -b 57600 -U flash:w:$(TARGET).hex

Config.h Options

1. Magic command key combination

#define IS_COMMAND() (keyboard_report->mods == (MOD_BIT(KB_LSHIFT) | MOD_BIT(KB_RSHIFT))) 

2. Mechanical Locking Support for CapsLock

/* Mechanical locking CapsLock support. Use KC_LCAP instead of KC_CAPS in keymap */
#define CAPSLOCK_LOCKING_ENABLE
/* Locking CapsLock resynchronize hack */
#define CAPSLOCK_LOCKING_RESYNC_ENABLE

Change your keymap

keymap.md

Debuging

Use PJRC's hid_listen to see debug messages. You can use the tool for debug even if firmware use LUFA stack.

You will see output from firmware like this.

r/c 01234567
00: 00000000
01: 00000000
02: 00000000
03: 00000000
04: 00000000
05: 00000000
06: 00000000
07: 00000000

---- action_exec: start -----
EVENT: 0307u(22511)
Tapping: Tap release(2)
ACTION: ACT_LAYER[5:2C]
LAYER_PRESSED: Tap: unregister_code
TAPPING_KEY=0307u(22511):2
processed: 0307u(22511):2

Tapping: End(Timeout after releasing last tap): FFFFu(22715)
TAPPING_KEY=0000u(0):0

Magic Comannds

To see help press Magic + H.

Magic key bind may be LShift + RShift in many project, but Power key on ADB converter. Magic keybind can be vary on each project, check config.h in project directory.

Following commands can be also executed with Magic + key. In console mode Magic keybind is not needed.

----- Command Help -----
c:      enter console mode
d:      toggle debug enable
x:      toggle matrix debug
k:      toggle keyboard debug
m:      toggle mouse debug
p:      toggle print enable
v:      print device version & info
t:      print timer count
s:      print status
0/F10:  switch to Layer0
1/F1:   switch to Layer1
2/F2:   switch to Layer2
3/F3:   switch to Layer3
4/F4:   switch to Layer4
PScr:   power down/remote wake-up
Caps:   Lock Keyboard(Child Proof)
Paus:   jump to bootloader

TBD

Conguration with Boot Magic

Boot Magic are executed during boot up time. Press Magic key below then pulgin keyboard cable. These settings are stored in EEPROM.

  • Clear configuration stored in EEPROM(Backspace)
  • Kick up Bootloader(B)
  • Debug enable(D)
  • Swap Control and CapsLock(Left Control)
  • Change CapsLock to Control(Casp Lock)
  • Swap LeftAlt and Gui(Left Alt)
  • Swap RightAlt and Gui(Right Alt)
  • Disable Gui(Left Gui)
  • Swap Grave and Escape(Grave)
  • Swap BackSlash and BackSpace(Back Slash)

TBD

Mechanical Locking support for CapsLock

To enable this feature define these two macros in config.h and use KC_LCAP for locking CapsLock in keymap instead of normal KC_CAPS. Resync option tries to keep lock switch state consistent with keyboard LED state.

#define CAPSLOCK_LOCKING_ENABLE
#define CAPSLOCK_LOCKING_RESYNC_ENABLE

Start Your Own Project

TBD

Config.h Options

1. USB vendor/product ID and device description

#define VENDOR_ID       0xFEED
#define PRODUCT_ID      0xBEEF
/* device description */
#define MANUFACTURER    t.m.k.
#define PRODUCT         Macway mod
#define DESCRIPTION     t.m.k. keyboard firmware for Macway mod

2. Keyboard matrix configuration

#define MATRIX_ROWS 8
#define MATRIX_COLS 8
#define MATRIX_HAS_GHOST

Files & Directories

Top

  • common/ - common codes
  • protocol/ - keyboard protocol support
  • keyboard/ - keyboard projects
  • converter/ - protocol converter projects
  • doc/ - documents
  • common.mk - Makefile for common
  • protoco.mk - Makefile for protocol
  • rules.mk - Makefile for build rules

Common

  • action.[ch]
  • action_macro.[ch]
  • bootloader.[ch]
  • command.[ch]
  • controller_teensy.h
  • debug.[ch]
  • host.[ch]
  • host_driver.h
  • keyboard.[ch]
  • keycode.h
  • keymap.[ch]
  • led.h
  • matrix.h
  • mousekey.[ch]
  • print.[ch]
  • report.h
  • sendchar.h
  • sendchar_null.c
  • sendchar_uart.c
  • timer.[ch]
  • uart.[ch]
  • util.[ch]

Keyboard Protocols

  • lufa/ - LUFA USB stack
  • pjrc/ - PJRC USB stack
  • vusb/ - Objective Development V-USB
  • iwrap/ - Bluetooth HID for Bluegiga iWRAP
  • ps2.c - PS/2 protocol
  • adb.c - Apple Desktop Bus protocol
  • m0110.c - Macintosh 128K/512K/Plus keyboard protocol
  • news.c - Sony NEWS keyboard protocol
  • x68k.c - Sharp X68000 keyboard protocol
  • serial_soft.c - Asynchronous Serial protocol implemented by software

License

Under GPL 2 or later. Some protocol files are under Modified BSD License. LUFA, PJRC and V-USB stack have their own license respectively.