/* Copyright 2016 Jack Humbert * Copyright 2019 Drashna Jael're (@drashna, aka Christopher Courtney) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* Author: Wojciech Siewierski < wojciech dot siewierski at onet dot pl > */ #include "process_dynamic_macro.h" #include #include "action_layer.h" #include "keycodes.h" #include "debug.h" #include "wait.h" #ifdef BACKLIGHT_ENABLE # include "backlight.h" #endif // default feedback method void dynamic_macro_led_blink(void) { #ifdef BACKLIGHT_ENABLE backlight_toggle(); wait_ms(100); backlight_toggle(); #endif } /* User hooks for Dynamic Macros */ __attribute__((weak)) bool dynamic_macro_record_start_kb(int8_t direction) { return dynamic_macro_record_start_user(direction); } __attribute__((weak)) bool dynamic_macro_record_start_user(int8_t direction) { dynamic_macro_led_blink(); return true; } __attribute__((weak)) bool dynamic_macro_play_kb(int8_t direction) { return dynamic_macro_play_user(direction); } __attribute__((weak)) bool dynamic_macro_play_user(int8_t direction) { dynamic_macro_led_blink(); return true; } __attribute__((weak)) bool dynamic_macro_record_key_kb(int8_t direction, keyrecord_t *record) { return dynamic_macro_record_key_user(direction, record); } __attribute__((weak)) bool dynamic_macro_record_key_user(int8_t direction, keyrecord_t *record) { dynamic_macro_led_blink(); return true; } __attribute__((weak)) bool dynamic_macro_record_end_kb(int8_t direction) { return dynamic_macro_record_end_user(direction); } __attribute__((weak)) bool dynamic_macro_record_end_user(int8_t direction) { dynamic_macro_led_blink(); return true; } __attribute__((weak)) bool dynamic_macro_valid_key_kb(uint16_t keycode, keyrecord_t *record) { return dynamic_macro_valid_key_user(keycode, record); } __attribute__((weak)) bool dynamic_macro_valid_key_user(uint16_t keycode, keyrecord_t *record) { return true; } /* Convenience macros used for retrieving the debug info. All of them * need a `direction` variable accessible at the call site. */ #define DYNAMIC_MACRO_CURRENT_SLOT() (direction > 0 ? 1 : 2) #define DYNAMIC_MACRO_CURRENT_LENGTH(BEGIN, POINTER) ((int)(direction * ((POINTER) - (BEGIN)))) #define DYNAMIC_MACRO_CURRENT_CAPACITY(BEGIN, END2) ((int)(direction * ((END2) - (BEGIN)) + 1)) /** * Start recording of the dynamic macro. * * @param[out] macro_pointer The new macro buffer iterator. * @param[in] macro_buffer The macro buffer used to initialize macro_pointer. */ void dynamic_macro_record_start(keyrecord_t **macro_pointer, keyrecord_t *macro_buffer, int8_t direction) { dprintln("dynamic macro recording: started"); dynamic_macro_record_start_kb(direction); clear_keyboard(); layer_clear(); *macro_pointer = macro_buffer; } /** * Play the dynamic macro. * * @param macro_buffer[in] The beginning of the macro buffer being played. * @param macro_end[in] The element after the last macro buffer element. * @param direction[in] Either +1 or -1, which way to iterate the buffer. */ void dynamic_macro_play(keyrecord_t *macro_buffer, keyrecord_t *macro_end, int8_t direction) { dprintf("dynamic macro: slot %d playback\n", DYNAMIC_MACRO_CURRENT_SLOT()); layer_state_t saved_layer_state = layer_state; clear_keyboard(); layer_clear(); while (macro_buffer != macro_end) { process_record(macro_buffer); macro_buffer += direction; #ifdef DYNAMIC_MACRO_DELAY wait_ms(DYNAMIC_MACRO_DELAY); #endif } clear_keyboard(); layer_state_set(saved_layer_state); dynamic_macro_play_kb(direction); } /** * Record a single key in a dynamic macro. * * @param macro_buffer[in] The start of the used macro buffer. * @param macro_pointer[in,out] The current buffer position. * @param macro2_end[in] The end of the other macro. * @param direction[in] Either +1 or -1, which way to iterate the buffer. * @param record[in] The current keypress. */ void dynamic_macro_record_key(keyrecord_t *macro_buffer, keyrecord_t **macro_pointer, keyrecord_t *macro2_end, int8_t direction, keyrecord_t *record) { /* If we've just started recording, ignore all the key releases. */ if (!record->event.pressed && *macro_pointer == macro_buffer) { dprintln("dynamic macro: ignoring a leading key-up event"); return; } /* The other end of the other macro is the last buffer element it * is safe to use before overwriting the other macro. */ if (*macro_pointer - direction != macro2_end) { **macro_pointer = *record; *macro_pointer += direction; } dynamic_macro_record_key_kb(direction, record); dprintf("dynamic macro: slot %d length: %d/%d\n", DYNAMIC_MACRO_CURRENT_SLOT(), DYNAMIC_MACRO_CURRENT_LENGTH(macro_buffer, *macro_pointer), DYNAMIC_MACRO_CURRENT_CAPACITY(macro_buffer, macro2_end)); } /** * End recording of the dynamic macro. Essentially just update the * pointer to the end of the macro. */ void dynamic_macro_record_end(keyrecord_t *macro_buffer, keyrecord_t *macro_pointer, int8_t direction, keyrecord_t **macro_end) { dynamic_macro_record_end_kb(direction); /* Do not save the keys being held when stopping the recording, * i.e. the keys used to access the layer DM_RSTP is on. */ while (macro_pointer != macro_buffer && (macro_pointer - direction)->event.pressed) { dprintln("dynamic macro: trimming a trailing key-down event"); macro_pointer -= direction; } dprintf("dynamic macro: slot %d saved, length: %d\n", DYNAMIC_MACRO_CURRENT_SLOT(), DYNAMIC_MACRO_CURRENT_LENGTH(macro_buffer, macro_pointer)); *macro_end = macro_pointer; } /* Both macros use the same buffer but read/write on different * ends of it. * * Macro1 is written left-to-right starting from the beginning of * the buffer. * * Macro2 is written right-to-left starting from the end of the * buffer. * * ¯o_buffer macro_end * v v * +------------------------------------------------------------+ * |>>>>>> MACRO1 >>>>>> <<<<<<<<<<<<< MACRO2 <<<<<<<<<<<<<| * +------------------------------------------------------------+ * ^ ^ * r_macro_end r_macro_buffer * * During the recording when one macro encounters the end of the * other macro, the recording is stopped. Apart from this, there * are no arbitrary limits for the macros' length in relation to * each other: for example one can either have two medium sized * macros or one long macro and one short macro. Or even one empty * and one using the whole buffer. */ static keyrecord_t macro_buffer[DYNAMIC_MACRO_SIZE]; /* Pointer to the first buffer element after the first macro. * Initially points to the very beginning of the buffer since the * macro is empty. */ static keyrecord_t *macro_end = macro_buffer; /* The other end of the macro buffer. Serves as the beginning of * the second macro. */ static keyrecord_t *const r_macro_buffer = macro_buffer + DYNAMIC_MACRO_SIZE - 1; /* Like macro_end but for the second macro. */ static keyrecord_t *r_macro_end = macro_buffer + DYNAMIC_MACRO_SIZE - 1; /* A persistent pointer to the current macro position (iterator) * used during the recording. */ static keyrecord_t *macro_pointer = NULL; /* 0 - no macro is being recorded right now * 1,2 - either macro 1 or 2 is being recorded */ static uint8_t macro_id = 0; /** * If a dynamic macro is currently being recorded, stop recording. */ void dynamic_macro_stop_recording(void) { switch (macro_id) { case 1: dynamic_macro_record_end(macro_buffer, macro_pointer, +1, ¯o_end); break; case 2: dynamic_macro_record_end(r_macro_buffer, macro_pointer, -1, &r_macro_end); break; } macro_id = 0; } /* Handle the key events related to the dynamic macros. */ bool process_dynamic_macro(uint16_t keycode, keyrecord_t *record) { if (macro_id == 0) { /* No macro recording in progress. */ if (!record->event.pressed) { switch (keycode) { case QK_DYNAMIC_MACRO_RECORD_START_1: dynamic_macro_record_start(¯o_pointer, macro_buffer, +1); macro_id = 1; return false; case QK_DYNAMIC_MACRO_RECORD_START_2: dynamic_macro_record_start(¯o_pointer, r_macro_buffer, -1); macro_id = 2; return false; case QK_DYNAMIC_MACRO_PLAY_1: dynamic_macro_play(macro_buffer, macro_end, +1); return false; case QK_DYNAMIC_MACRO_PLAY_2: dynamic_macro_play(r_macro_buffer, r_macro_end, -1); return false; } } } else { /* A macro is being recorded right now. */ switch (keycode) { case QK_DYNAMIC_MACRO_RECORD_START_1: case QK_DYNAMIC_MACRO_RECORD_START_2: case QK_DYNAMIC_MACRO_RECORD_STOP: /* Stop the macro recording. */ if (record->event.pressed ^ (keycode != QK_DYNAMIC_MACRO_RECORD_STOP)) { /* Ignore the initial release * just after the recording * starts for DM_RSTP. */ dynamic_macro_stop_recording(); } return false; #ifdef DYNAMIC_MACRO_NO_NESTING case QK_DYNAMIC_MACRO_PLAY_1: case QK_DYNAMIC_MACRO_PLAY_2: dprintln("dynamic macro: ignoring macro play key while recording"); return false; #endif default: if (dynamic_macro_valid_key_kb(keycode, record)) { /* Store the key in the macro buffer and process it normally. */ switch (macro_id) { case 1: dynamic_macro_record_key(macro_buffer, ¯o_pointer, r_macro_end, +1, record); break; case 2: dynamic_macro_record_key(r_macro_buffer, ¯o_pointer, macro_end, -1, record); break; } } return true; break; } } return true; }