obliczenia_naukowe/l2/1.jl
2024-11-11 00:40:18 +01:00

151 lines
3.9 KiB
Julia
Executable file
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env julia
# Jacek Poziemski 272389
"""
sumvectorsforwards(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
Calculate the scalar sum of `x` and `y`,
going from the first element to the last.
# Arguments
- `x::Vector{T}`: first of the 2 vectors
- `y::Vector{T}`: second of the 2 vectors
"""
function sumvectorsforwards(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
s::T = zero(T)
for i::Int in 1:(length(x))
s += x[i] * y[i]
end
return s
end
"""
sumvectorsbackwards(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
Calculate the scalar sum of `x` and `y`,
going from the last element to the first.
# Arguments
- `x::Vector{T}`: first of the 2 vectors
- `y::Vector{T}`: second of the 2 vectors
"""
function sumvectorsbackwards(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
s::T = zero(T)
for i::Int in (length(x)):-1:1
s += x[i] * y[i]
end
return s
end
"""
sumvectorsdecreasing(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
Calculate the scalar sum of `x` and `y` by calculating
the partial sums of positive and negative numbers,
summing up the partial sums using a decreasing order
according to their absolute values.
# Arguments
- `x::Vector{T}`: first of the 2 vectors
- `y::Vector{T}`: second of the 2 vectors
"""
function sumvectorsdecreasing(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
s::Vector{T} = zeros(T, length(x))
for i::Int in 1:(length(x))
s[i] = x[i] * y[i]
end
spos::Vector{T} = s[s .> zero(T)]
sort!(spos, rev = true)
sneg::Vector{T} = s[s .<= zero(T)]
sort!(sneg)
neg::T = zero(T)
for x::T in sneg
neg += x
end
pos::T = zero(T)
for x::T in spos
pos += x
end
return pos + neg
end
"""
sumvectorsincreasing(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
Calculate the scalar sum of `x` and `y` by calculating
the partial sums of positive and negative numbers,
summing up the partial sums using an increasing order
according to their absolute values.
# Arguments
- `x::Vector{T}`: first of the 2 vectors
- `y::Vector{T}`: second of the 2 vectors
"""
function sumvectorsincreasing(x::Vector{T}, y::Vector{T})::T where T <: AbstractFloat
s::Vector{T} = zeros(T, length(x))
for i::Int in 1:(length(x))
s[i] = x[i] * y[i]
end
spos::Vector{T} = s[s .> zero(T)]
sort!(spos)
sneg::Vector{T} = s[s .<= zero(T)]
sort!(sneg, rev = true)
neg::T = zero(T)
for x::T in sneg
neg += x
end
pos::T = zero(T)
for x::T in spos
pos += x
end
return pos + neg
end
x32::Vector{Float32} = [2.718281828, 3.141592654, 1.414213562, 0.577215664, 0.301029995]
y32::Vector{Float32} = [1486.2497, 878366.9879, 22.37492, 4773714.647, 0.000185049]
x64::Vector{Float64} = [2.718281828, 3.141592654, 1.414213562, 0.577215664, 0.301029995]
y64::Vector{Float64} = [1486.2497, 878366.9879, 22.37492, 4773714.647, 0.000185049]
expected::Float64 = 1.00657107000000 * 10^(11)
res::Float64 = sumvectorsforwards(x32, y32)
println("summing x32 and y32 forwards: $res; correct: $(res == expected)")
res = sumvectorsbackwards(x32, y32)
println("summing x32 and y32 backwards: $res; correct: $(res == expected)")
res = sumvectorsdecreasing(x32, y32)
println("summing x32 and y32 decreasing: $res; correct: $(res == expected)")
res = sumvectorsincreasing(x32, y32)
println("summing x32 and y32 increasing: $res; correct: $(res == expected)")
res = sumvectorsforwards(x64, y64)
println("summing x64 and y64 forwards: $res; correct: $(res == expected)")
res = sumvectorsbackwards(x64, y64)
println("summing x64 and y64 backwards: $res; correct: $(res == expected)")
res = sumvectorsdecreasing(x64, y64)
println("summing x64 and y64 decreasing: $res; correct: $(res == expected)")
res = sumvectorsincreasing(x64, y64)
println("summing x64 and y64 increasing: $res; correct: $(res == expected)")